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ABSTRACT

This research investigates how effectively machine learning algorithms can predict cutting 
forces during machining, offering a practical alternative to conventional experimental and 
numerical methods. The experiments included turning AISI 1117 steel with a cemented car-
bide insert on a CNC lathe while changing the cutting speed, feed rate, and depth of cut in a 
planned way. Cutting force data was collected using a Kistler 9257B dynamometer and used 
to train and test several regression-based machine learning models. These included cubic 
support vector machine (SVM), gaussian process regression (GPR), various forms of linear 
regression, decision trees, and ensemble techniques. Two modelling scenarios were analysed: 
one using cutting speed and feed rate as input variables, and the other using depth of cut as a 
third input. In the two-variable case, cubic SVM showed the best performance (R²=0.93, root 
mean squared error [RMSE]=19.57), while GPR with a Matern 5/2 kernel achieved the highest 
accuracy in the three-variable model (R²=0.99, RMSE<40). Model performance was assessed 
using metrics such as R², RMSE, mean squared error, and mean absolute error, with R² and 
RMSE being most effective for comparisons. The findings indicate that while cubic SVM is 
suitable for simpler, lower-dimensional data, GPR performs better in capturing complex, non-
linear relationships among multiple variables.
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INTRODUCTION

This study aims to evaluate which learning algorithm 
provides the most accurate predictions using machine 
learning (ML) methods and to compare the algorithms that 
produce the best findings.

The finite element method has been the leading numer-
ical methodology in this field for a long time. Recently, ML 
and artificial intelligence have become significant method-

ologies for handling engineering difficulties. The advantage 
of predictive or learning methodologies is in the ability to 
reduce the resolution times of problems that are difficult 
to address using the finite element method, enabling faster 
solution acquisition. Finite element software can integrate 
learning or predictive methodologies, either in conjunction 
to minimise solution time or separately to attain the solu-
tion. When precise modelling approaches and assumptions 
are used, numerical solution methods, such as the finite el-
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ement method, produce results that closely correspond to 
experimental data. Artificial intelligence or ML systems can 
use the finite element method to reproduce data. Concur-
rently, it can reduce the time and financial resources spent 
on studies by obtaining data that is inaccessible through ex-
perimental methods.

ML is a specialised field in artificial intelligence that 
involves creating models and algorithms to analyse cur-
rent data using mathematical and statistical techniques. 
These models are then used to generate predictions about 
unknown data based on the patterns and insights derived 
from the analysis. The primary objective of ML is to pro-
vide precise estimations. Nevertheless, comprehending the 
prediction functions and linking them to a particular prob-
ability model may present challenges [1].

Machining processes, fundamental to manufactur-
ing procedures, generate outputs including cutting forces, 
temperature, surface roughness, tool wear, and tool vibra-
tions, all of which directly influence production quality. 
Researchers have increasingly utilised ML and artificial in-
telligence algorithms in recent years to predict and optimise 
these outputs. Researchers have conducted and continue 
to develop numerous studies in this field. While some re-
searchers have evaluated the performance of individual ML 
algorithms, others have focused on hybrid approaches by 
combining multiple algorithms to achieve higher accuracy. 
These efforts contribute significantly to making manufac-
turing processes more efficient, predictable, and automated.

For instance, in a study focusing on the turning process 
of AISI 4340 alloy steel, gaussian process regression (GPR) 
was employed to predict cutting forces. The results showed 
that GPR was better than other methods like support vec-
tor machines (SVM) and artificial neural networks (ANN), 
with a mean absolute percentage error of 5.12% and a high 
coefficient of determination (R²=0.9843). Moreover, the 
GPR model exhibited the shortest training time, complet-
ing in just 0.35087 seconds. These findings suggest that GPR 
can be effectively utilised by process engineers to estimate 
cutting forces prior to production, aiding in resource opti-
misation and the design of experiments aimed at achieving 
desired product quality [2].

Kumar et al. [3] did a study comparing different ML al-
gorithms to predict cutting forces in turning operations us-
ing cutting fluids that are enriched with hybrid nanofluids. 
Their results emphasised the importance of fluid-based pro-
cess parameters for enhancing prediction accuracy. Mikoła-
jczyk et al. [4] suggested a method that compares multiple 
linear regression (MLR), SVM, and ANN to predict cutting 
forces when turning materials, using a large set of exper-
iments with various tool shapes, feed rates, and cutting 
speeds. Their work involved an extensive experimental data-
set covering different combinations of tool geometry, feed 
rate, and cutting speed. The results demonstrated that ANN 
models outperformed MLR and SVM in terms of prediction 
error and robustness across various machining conditions.

In their study, George et al. [5] employed ML algorithms 
to identify the most effective parameters for removing met-
al. They found that neural networks and ML are valuable 

resources for engineers, but their implementation in in-
dustrial settings requires innovative approaches to gather 
applicable data. Kant and Sangwan [6] employed ANN 
and support vector regression models to identify the op-
timal processing parameters. As a result, it was found that 
ANN produced more accurate results than the reinforce-
ment learning model, and the learning methods used were 
very similar to the experimental findings. Yang et al. [7] 
employed the supported vector machine method to handle 
difficult-to-machine materials, namely AISI 304. In their 
work on optimising cutting settings, they discovered that 
the SVM method achieved a high level of accuracy.

Recent advancements in machining have demonstrat-
ed the growing relevance of ML for optimising cutting 
processes and predicting performance metrics, such as 
surface roughness, cutting forces, and tool wear. Dehghan-
pour Abyaneh et al. [8] investigated the grinding of UNS 
S34700 stainless steel under different coolant conditions 
using a hybrid modelling framework combining GPR, 
ANN, and genetic algorithms. Their models achieved 
high predictive accuracy (R²≈0.98), showing that ML can 
effectively model complex grinding dynamics. Similarly, 
Hernández-González et al. [9] applied ANN to analyse the 
dry, high-speed turning of AISI 1045 steel, revealing that 
moderate cutting speeds minimise specific energy con-
sumption and cutting forces while emphasising the role of 
optimal parameter selection. In another recent study, Das 
et al. [10] used multiple ML techniques—including poly-
nomial regression, Random Forest, Gradient Boosting, and 
AdaBoost—to predict tool wear, cutting forces, and surface 
roughness during the tough turning of AISI D6 steel with 
an AlTiSiN-coated tool. Their models, particularly poly-
nomial regression, achieved R² values above 0.90 and were 
coupled with metaheuristic optimisation to determine the 
optimal machining parameters. Pawanr and Gupta [11] 
investigated the dry turning of SDSS-2507 super duplex 
stainless steel using textured tools and applied ML to es-
timate mean roughness depth (Rz), validating the effect 
of feed rate and the efficacy of tool surface modifications 
under challenging machining conditions. Jouini et al. [12] 
studied dry and Cryo+MQL-assisted high-speed turning of 
hardened AISI 4340 and found that the feed rate was the 
most important factor affecting cutting forces and surface 
quality, while tool life was more affected by cutting speed, as 
demonstrated by Grey Relational Analysis. Sudarsan et al. 
[13] sought to improve the production process parameters 
in the CNC machining of aluminium alloy 7071 using the 
L27 orthogonal array developed by Taguchi and response 
surface methodology. Nevertheless, they did not intend to 
employ ML algorithms in their studies.

Numerous studies have focused on enhancing surface 
quality within the manufacturing sector. Recent studies 
have increasingly concentrated on enhancing surface in-
tegrity using roller burnishing, especially for aluminium 
alloys such as Al6061-T6. Somatkar, et al. [14] conducted 
an extensive assessment of process parameters—includ-
ing burnishing speed, feed rate, and number of passes—
and their effects on surface roughness, microhardness, 
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and residual stresses. The authors reiterated the impor-
tance of modelling tools, such as ANN and response sur-
face methodologies, for optimising surface properties and 
accurately predicting results.

Dwivedi et al. [15] established a comprehensive mod-
elling and optimisation framework for Al6061-T6, illus-
trating that enhanced surface smoothness and improved 
roundness may be achieved by precise modulation of pen-
etration depth and burnished pressure. Their experimental 
methodology, utilising statistical methods, confirmed the 
efficacy of their predictive model, which is pertinent to ma-
chine learning-driven process control systems.

Somatkar et al. [16] conducted a comparative study ex-
amining the impact of lubrication conditions—dry versus 
nanofluid minimum quantity lubrication (MQL)—on sur-
face quality. The results show that nanofluid MQL markedly 
improves microhardness and diminishes surface roughness 
in comparison to dry burnishing. These findings underline 
the importance of thermal and tribological parameters in 
surface integrity and pave the way for data-driven model-
ling of lubrication techniques in roller burnishing.

Beyond conventional experimental approaches, ma-
chine learning (ML) techniques have been increasingly 
applied to finite element simulation studies, particularly 
parameter estimation and surrogate modelling. This trend 
reflects the growing need to reduce the computational costs 
associated with traditional physics-based simulations in 
manufacturing. Hashemitaheri et al. [17] created SVR and 
GPR models that use data from finite element simulations 
to predict cutting forces and maximum tool temperatures 
during orthogonal machining. Their study demonstrated 
that ML models, particularly SVR, can match the predic-
tive accuracy of numerical methods while enabling near 
real-time predictions. In the same way, Klippel et al. [18] 
suggested a ML system based on 2,500 virtual experiments 
using SPH to predict cutting and feed forces when machin-
ing Ti6Al4V. The model incorporated tool geometry vari-
ables such as rake angle, clearance angle, and cutting-edge 
radius, providing a fast and efficient alternative to SPH sim-
ulations. Although the ML model slightly underpredicted 
certain trends when compared with physical experiments, 
it proved highly effective for interpolating across a wide de-
sign space. These studies collectively highlight the synergy 
between physics-based simulations and data-driven mod-
els, where ML serves not only as a surrogate for rapid pre-
diction but also as a tool for identifying trends and gener-
alising simulation results for complex machining processes.

These studies collectively illustrate that ML-driven 
modelling achieves high predictive accuracy for machin-
ing outputs. Key parameters, including feed rate, cutting 
speed, and depth of cut, remain significant determinants 
of machining results. Enhancements in tool design, such 
as coatings and textures, provide quantifiable performance 
advantages when combined with ML. Furthermore, con-
temporary machining strategies increasingly integrate 
sustainability metrics, such as energy efficiency, by high-
lighting ML's contribution to performance prediction and 
optimising smart, sustainable manufacturing.

Evaluation Criteria of Learning Algorithms
Once the experimental data has been transmitted to 

the regression learning algorithm in Matlab software, 
all learning algorithms may be executed concurrently, 
and the most optimal prediction method can be chosen. 
Estimation involves two crucial steps: data preparation 
and model comparison. The parameters used to evaluate 
and contrast models include accuracy, speed, resilience, 
scalability, and interpretability. R2, mean square error 
(MSE), root mean squared error (RMSE), and mean ab-
solute error (MAE) are key performance measures used 
in the evaluation of ANN and ML techniques [19].

The coefficient R², which represents the explanatory 
coefficient of the model, is directly related to its predic-
tive ability. The model's performance inversely correlates 
with the error metrics MSE, RMSE, and MAE. According 
to Jierula et al. [20], low values of MSE, RMSE, and mean 
absolute error MAE imply a high level of performance. 
Out of these performance indicators, R² is the coefficient 
used to determine the accuracy of the model. The coef-
ficient's high value suggests a strong predictive link. Ac-
cording to Wang et al. [21], low values of MSE, RMSE, 
and MAE imply strong performance, with the level of 
performance being inversely proportional to the results 
of these error measures. For instance, when the RMSE is 
zero, it indicates a high level of performance [22].

Several regression models depend on distance met-
rics to determine convergence towards the optimal re-
sult. Determining the ideal result requires a quantitative 
analysis based on specific criteria. The often-employed 
metrics include the MAE, the MSE, or the square RMSE. 
MAE measures the absolute deviation of the predicted 
values (entries of the dataset) from the actual values in a 

Figure 1. Visualising errors in regression. The vertical lines 
represent the error in our regression model, which is squared 
and summed to make our SSE [23].

Figure 2. The workpiece used in the experiments [24].
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regression problem. It is calculated by taking the average 
of the absolute differences between the predicted and ac-
tual values. When calculating negative errors, the abso-
lute value of the distances is employed to ensure accura-
cy. Figure 1 accurately illustrates this scenario. Equation 
1 displays the computation of MAE [23].

 (1)

An alternative approach is to calculate the square of the 
distance, resulting in positive values. As the projected val-
ues approach the real values, the MSE decreases. The MSE, 
is calculated by taking the average of the squared errors of 
the model, as shown in Equation 2.

 (2)

RMSE is a mathematical metric that calculates the 
square root of the MSE and converts it back to the original 
unit of measurement. RMSE quantifies the dispersion of 
predicting errors (Equation 3).

Figure 3. Schematic drawing of the cutting tool and tool 
holder used in the experiments [24].

Table 1. Experimental cutting parameters [24]

Experiment 
number

Cutting 
speed 

(m/min.)

Cutting 
depth 
(mm)

Feed rate 
(mm/rev)

1 50 1-2 0.1
2 0.15
3 0.2
4 0.25
5 0.3
6 75 1-2 0.1
7 0.15
8 0.2
9 0.25
10 0.3
11 100 1-2 0.1
12 0.15
13 0.2
14 0.25
15 0.3
16 125 1-2 0.1
17 0.15
18 0.2
19 0.25
20 0.3
21 150 1-2 0.1
22 0.15
23 0.2
24 0.25
25 0.3

Table 3. Specifications of the JOHNFORD T35 CNC lathe

X axis 250 mm
Y axis 600 mm
Power 10 kW
Revolution speed 4000 dev/dak.
Hydraulic chuck diameter 250 mm
Precision 0.001 mm
Turret tool capacity 12

Table 4. Technical specifications of the Kistler 9257B 
dynamometer [24]

Force Range -5…10 kN
Response <0.01N
Sensitivity

Fx, Fy -7.5 pC/N
Fz -3.5 pC/N

Linearity 1% FSO
Hysteresis 0.5% FSO
Natural frequency 3.5 kHz
Operating temperature 0…70ºC
Capacitance 220 pF
Insulation resistance at 20ºC 1013 Ω
Ground insulation >108 Ω
Protection class IP 67
Weight 7.5 kg

Table 2. Tool holder dimensions [24]

Parameter Dimension (mm)

a 25
b 25
L 150
h 25
s 22
e 25
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 (3)

In this study, all parameters were evaluated, and the ML 
algorithms used were closer to the prediction. 

MATERIAL AND METHOD

Workpiece
The experimental tests conducted in the laboratories of 

Gazi University, Faculty of Technology, utilised a workpiece 
with a diameter of 60 mm and a length of 400 mm. [24]. The 
workpiece material is AISI 1117 steel. The material's surface 
was initially machined with a depth of cut of 1 mm in case 
of hardening of the outer surface layer. The dimensions of 
the workpiece are illustrated in Figure 2. Experimental cut-
ting parameters are given in Table 1.

Cutting Tool and Tool Holder
The cutting tool used in the experiments is a cemented 

carbide SCMW 12 M508-12F insert, compliant with ISO 
1832 standards and without a chip breaker. It features a rake 
angle of 0° and a clearance angle of 7°. The tool holder is of 
type SSBCR 25 25 M12 with a 75° lead angle, suitable for 
the insert geometry. Figure 3 provides a schematic repre-
sentation of the tool and holder, while Table 2 provides the 
dimensional specifications.

Experimental Setup
The experiments were conducted at the CNC Workshop 

of Gazi University, Faculty of Technical Education, using 

the JOHNFORD T35 CNC turning machine. The main 
specifications of the lathe are presented in Table 3 [24]. The 
cutting forces in the experiments were measured using a 
Kistler 9257B-type dynamometer, as seen in Figure 4. The 
technical features of this dynamometer are shown in Ta-
ble 4. During the cutting process, signals produced by the 
tool were transmitted to a computer using an amplifier and 
transformed into actual force values using the Dynoware 
software package [24]. 

Estimation of Cutting Forces by Learning Method
This part emphasises the prediction of cutting forces 

through the analysis of variations in cutting speed, feed rate, 

Figure 4. Kistler 9257B dynamometer [24].

Table 5. Comparison of learning algorithms in Matlab regression

Algorithms Used RMSE R2 MSE MAE
Linear regression (interactions linear) 23,441 0.91 549.48 18,607
Linear regression (linear) 22,089 0.9 48.93 18,642
Linear regression (robust linear) 22,358 0.91 499.89 18,716
Stepwise linear regression 22,089 0.91 487.93 18,642
Tree (medium tree) 74,713 0 5582.1 63,092
Tree (coarse tree) 74,713 0 5582.1 63,092
Tree (fine tree) 51,269 0.53 2628.5 45,503
SVM (linear SVM) 22,478 0.91 505.28 18,837
SVM (medium gaussian SVM) 33.09 0.79 1149.8 29,176
SVM (cubic SVM) 19,573 0.93 383.1 16,658
SVM (coarse gaussian SVM) 30,644 0.83 939.03 26,287
SVM (fine gaussian SVM) 73,152 0.04 5351.3 61,087
Gaussian process regression (squared exponential GPR) 22,013 0.91 484.57 18,652
Gaussian process regression (matern 5/2 GPR) 22,932 0.91 525.85 19,386
Gaussian process regression (rational quadratic GPR) 22,839 0.91 521.63 19,266
Gaussian process regression (exponential GPR) 22,561 0.91 509.14 19,988
Ensemble (boosted trees) 50,841 0.54 2584.8 44,141
Ensemble (bagged trees) 60,588 0.34 3670.9 51,621
SVM: Support vector machine; GPR: Gaussian process regression; RMSE: Root mean squared error; MSE: Mean square error; MAE: Mean absolute error.
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and depth of cut. The depth of cut was initially maintained 
constant, but the feed rate and cutting speed were treated as 
independent variables. Subsequently, depth of cut was incor-

porated as a third independent variable in addition to the ini-
tial two. The prediction models were evaluated to determine 
which method most precisely mirrored the experimental 

Figure 5. Feed rate & cutting force for the cutting speed of  (a) 50 m/min (b) 75 m/min (c) 100 m/min (d) 125 m/min (e) 
150 m/min.

(a)

(c)

(b)

(d)

(e)
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cutting forces, the dependent variable. The aim is to estimate 
cutting forces using only independent variables and to see if 
ML techniques produce more accurate results by comparing 
the predicted cutting force to experimentally acquired values. 
The efficacy of the learning algorithms was assessed utilising 
R², RMSE, MSE, and MAE, as previously mentioned.

Hyperparameter Tuning and Cross-Validation Methods
The success of ML algorithms depends not only on the 

choice of the model but also on the selection of appropriate 
hyperparameter values and model validation strategies. In this 
study, regression-based learning algorithms were implemented 
using MATLAB's Regression Learner interface, which provides 

Figure 6. Feed rate & cutting force for various cutting speeds and depths of cuts (a) 50 m/min (b) 75 m/min (c) 100 m/min 
(d) 125 m/min (e) 150 m/min.

(a)

(c)

(b)

(d)

(e)
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automated tools for testing multiple hyperparameter configu-
rations and selecting the optimal model setup. Specifically, the 
study explored and compared different kernel functions and 
associated parameter values for cubic SVM and GPR.

Although the hyperparameter tuning was not conduct-
ed manually by the user, the automated configuration and 
selection process provided by the Regression Learner inter-
face was effectively meant to enhance model performance. 
In the case of SVM, kernel types such as linear, cubic, and 
Gaussian were evaluated, while for GPR, various kernel 
functions, including squared exponential, rational quadrat-
ic, and Matern 5/2, were tested.

Model performance was assessed using a cross-valida-
tion approach. The MATLAB Regression Learner applies 
5-fold cross-validation by default, which objectively eval-
uates the generalisability of the model. In this method, the 
training dataset is divided into five equal parts, each serving 
as a test set in turn, and the average performance metrics 
are calculated and compared.

Results of the Estimation Utilizing two Independent 
Variables
This section presents a constant cutting depth of 1 mm. 

The cutting speed and feed rate are considered as indepen-
dent variables, whereas the cutting force is regarded as the 
dependent variable. Regression and learning techniques 
from MATLAB are employed for analysis.

The review of Tables 5 and 6 and Figure 5 shows how 
well different ML algorithms predict cutting forces using 
two factors: cutting speed and feed rate. The cubic SVM 
was the most accurate of all the algorithms tested, with an 
R² value of 0.93 and the lowest RMSE of 19.57, outperform-
ing both linear regression and tree-based models. The cubic 
SVM showed the best accuracy of all the algorithms tested, 
with an R² value of 0.93 and the lowest RMSE of 19.57, out-
performing linear regression and tree-based models.

The prediction errors presented in Table 6 demon-
strate that Cubic SVM consistently achieves errors below 
10%, especially at both lower and higher cutting speeds. 

Table 6. Comparison between experimental and predicted cutting force results

Cutting speed 
(m/min)

Feed rate
(mm/rev)

Experimental 
cutting force 

(N)

Cubic SVM 
prediction

Gaussian 
process 

prediction

Cubic SVM 
prediction 
error rate

Gaussian process 
prediction error 

rate
50 0.1 283 291.5 299.6 3.02 5.87
50 0.15 364 349.0 339.7 -4.12 -6.66
50 0.2 379 387.7 385.2 2.28 1.63
50 0.25 433 424.5 433.9 -1.97 0.20
50 0.3 483 476.5 483.5 -1.34 0.10
75 0.1 267 265.7 272.7 -0.49 2.14
75 0.15 339 317.3 311.1 -6.39 -8.24
75 0.2 363 354.4 355.4 -2.37 -2.09
75 0.25 409 393.9 403.8 -3.68 -1.28
75 0.3 458 453.0 453.8 -1.10 -0.93
100 0.1 229 248.4 250.5 8.46 9.40
100 0.15 285 292.8 286.4 2.74 0.49
100 0.2 295 327.0 328.7 10.83 11.44
100 0.25 342 367.8 375.7 7.55 9.87
100 0.3 441 432.5 425.1 -1.94 -3.60
125 0.1 238 237.9 234.3 -0.04 -1.56
125 0.15 290 273.8 267.0 -5.60 -7.93
125 0.2 310 303.6 306.6 -2.07 -1.10
125 0.25 339 344.4 351.3 1.60 3.64
125 0.3 422 413.3 399.1 -2.06 -5.43
150 0.1 228 232.5 224.8 1.99 -1.40
150 0.15 267 258.4 253.9 -3.20 -4.91
150 0.2 274 282.6 290.1 3.14 5.87
150 0.25 326 322.0 331.8 -1.22 1.77
150 0.3 414 393.8 377.0 -4.89 -8.94
SVM: Support vector machine.
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Figures 6a–e illustrate a linear increase in cutting force 
with respect to feed rate, with a steeper slope observed at 
higher cutting speeds, thereby confirming the impact of 
feed rate on force generation.

Trend Analysis Across Cutting Speeds
Figure 5 illustrates the correlation between feed rate and 

cutting force at various cutting speeds (50, 75, 100, 125, and 
150 m/min). In all instances, the cutting force exhibits a lin-
ear rise with the feed rate, which is consistent with expected 
machining behaviour. The rate of increase is more obvious 
at higher cutting speeds, suggesting that feed rate signifi-
cantly influences cutting force at increased speeds.

Model Performance Observation
At lower cutting speeds (like 50 m/min, Figure 5a, both 

models provide similar results, with Cubic SVM slightly 
performing better than GPR in terms of error (as shown in 
the first five rows of Table 6). At medium speeds (75–100 
m/min, Figures 5b, Figure 5c, GPR shows more reliable re-
sults, especially when cubic SVM tends to overestimate or 
underestimate (for example, at 100 m/min and 0.2 mm/rev, 
Cubic SVM has an error of 10.83% while GPR has 11.44%). 
At higher speeds (125–150 m/min, Figures 5 (d and e)), 
both models provide reliable predictions, but GPR is better 
at handling small changes in the force response.

Error Rate Evaluation
Table 6 indicates that Cubic SVM consistently achieves 

a prediction error below 10%, demonstrating optimal per-
formance at both very low and very high cutting speeds. 

GPR predictions demonstrate increased stability under 
different conditions, particularly at mid-range feed rates 
(e.g., 0.2–0.3 mm/rev). The most unfavourable prediction 
scenarios (e.g., 100 m/min at 0.2 mm/rev) demonstrate the 
sensitivity of Cubic SVM to particular input interactions, 
whereas GPR exhibits relative robustness.

Estimation Results Using Three Independent Variables
This part concentrates on predicting cutting forces by 

analysing variations in cutting speed, feed rate, and depth 
of cut. By incorporating the depth of cut as a third inde-
pendent variable, several regression approaches are uti-
lised to choose the ML strategy that achieves the greatest 
prediction accuracy.

As depth of cut is introduced as a third variable, Table 
7 and Figures 6a through 6e reveal a shift in algorithm 
performance. GPR, using the Matern 5/2 kernel, per-
formed better than Cubic SVM, reaching an R² of 0.99 
and a low RMSE of 39.78. The figures demonstrate that 
even under more complex conditions, GPR offers more 
stable predictions. Tables 8, 9 further confirms this trend: 
while Cubic SVM’s error rates range from 5% to 10%, 
GPR’s prediction errors mostly stay under 4% for a depth 
of 1 mm and often below 3% for 2 mm depth, highlighting 
its robustness in higher-dimensional data environments. 
These tabular and graphical findings collectively demon-
strate that cubic SVM is effective for simpler, two-vari-
able models, whereas GPR provides more accurate and 
consistent predictions when dealing with three-variable, 
nonlinear machining scenarios.

Table 7. Learning algorithms and validation with Matlab regression

Algorithms used RMSE R2 MSE MAE
Linear regression (interactions linear) 46.92 0.99 2201.8 35,146
Linear regression (linear) 121.24 0.9 14699 95,669
Linear regression (robust linear) 125.55 0.9 15763 98,627
Stepwise linear regression 49,256 0.98 2426.1 36,959
Tree (medium tree) 210.43 0.71 44282 153.34
Tree (coarse tree) 390.13 0 343.35 343.35
Tree (fine tree) 164.63 0.82 27102 112.88
SVM (linear SVM) 142.58 0.87 20329 105.99
SVM (medium gaussian SVM) 105.38 0.93 11105 69,801
SVM (cubic SVM) 51,572 0.98 2659.7 40,816
SVM (coarse gaussian SVM) 168.22 0.81 28299 114.84
SVM (fine gaussian SVM) 363.17 0.13 131890 316.04
Gaussian process regression (squared exponential GPR) 43,163 0.99 1863.1 34,137
Gaussian process regression (matern 5/2 GPR) 39,782 0.99 1582.6 32,321
Gaussian process regression (rational quadratic GPR) 43,316 0.99 1859 34,112
Gaussian process regression (exponential GPR) 75,386 0.96 5683 49,352
Ensemble (boosted trees) 151.55 0.85 22968 99,037
Ensemble (bagged trees) 278.71 0.49 77680 243.28
SVM: Support vector machine; RMSE: Root mean squared error; MSE: Mean square error; MAE: Mean absolute error.
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CONCLUSION

This study finds that ML methods, especially cubic 
SVM and GPR, are very promising for accurately predict-
ing cutting forces in machining. The cubic SVM demon-
strated superior performance with cutting speed and feed 
rate as the sole inputs, attaining a high R² and low RMSE. 
Incorporating depth of cut as a third factor improved the 
performance of GPR, particularly when using the Matern 
5/2 kernel, making it more accurate and reliable than all 
other methods. Along with these two models, we also 
looked at different algorithms, such as several kinds of lin-
ear regression, decision trees (fine, medium, and coarse), 
and ensemble methods (boosted and bagged trees). These 
models typically exhibited reduced performance, especial-
ly in their ability to capture nonlinear and multivariable 
interactions. This study's results align with previous re-
search by Kumar et al. [3] and Chen and Jeng [25], both of 
which highlighted the advantages of SVM and GPR mod-
els in machining applications.

The study indicates that the quantity and nature of in-
dependent variables significantly affect the generalisation 
capabilities and predictive accuracy of ML models. Models 
such as Cubic SVM demonstrate effective performance in 
low-dimensional settings characterised by stable variable 
interactions. As the number of input variables increases 
and their interactions grow more complex, particularly re-
garding the depth of cut, results projection becomes more 
difficult, necessitating the use of more adaptable and robust 
algorithms like GPR. This highlights the necessity of align-
ing model complexity with data structure in manufacturing 
contexts. This study identifies optimal models for predict-
ing cutting force and contributes to the advancement of 
manufacturing science through computational intelligence.

Data Availability Statement
The authors confirm that the data that supports the 

findings of this study are available within the article. Raw 
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Table 8. Result comparison for three parameters

Cutting speed 
(m/min)

Feed rate 
(mm/rev)

Experimental 
cutting force 
a=1mm (N)

Cubic SVM 
prediction 

a=1mm (N)

Gaussian process 
prediction 

a=1mm (N)

Cubic SVM 
prediction 
error rate

Gaussian process 
prediction error 

rate
50 0.1 283 269.4 289.2 -4.81 2.19
50 0.15 364 356.7 356.4 -2.01 -2.09
50 0.2 379 423.5 396.6 11.74 4.64
50 0.25 433 477.5 436.0 10.28 0.69
50 0.3 483 526.3 499.1 8.96 3.33
75 0.1 267 222.5 261.7 -16.67 -1.99
75 0.15 339 304.3 318.7 -10.24 -5.99
75 0.2 363 366.4 350.0 0.94 -3.58
75 0.25 409 416.4 387.6 1.81 -5.23
75 0.3 458 462.2 455.0 0.92 -0.66
100 0.1 229 204.4 242.8 -10.74 6.03
100 0.15 285 281.4 291.5 -1.26 2.28
100 0.2 295 339.6 317.2 15.12 7.53
100 0.25 342 386.5 356.9 13.01 4.36
100 0.3 441 429.8 432.3 -2.54 -1.97
125 0.1 238 200.5 233.3 -15.76 -1.97
125 0.15 290 273.6 278.0 -5.66 -4.14
125 0.2 310 328.5 300.4 5.97 -3.10
125 0.25 339 373.0 340.0 10.03 0.29
125 0.3 422 414.7 418.6 -1.73 -0.81
150 0.1 228 196.3 222.4 -13.90 -2.46
150 0.15 267 266.1 266.9 -0.34 -0.04
150 0.2 274 318.6 290.4 16.28 5.99
150 0.25 326 361.3 330.8 10.83 1.47
150 0.3 414 402.1 408.5 -2.87 -1.33
SVM: Support vector machine.
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